Course Number and Name

BEI 605- Embedded Systems Design

Credits and Contact Hours

3 and 45

Course Coordinator's Name

Ms S.Philomina

Text Books and References

Text Books:

1. James K.Peckol, "Embedded system Design", John Wiley & Sons, 2010

Reference:

- 1. Elicia White, "Making Embedded Systems", O'Reilly Series, SPD, 2011
- 2. Rajkamal, "Embedded Systems", TMH, 2009.
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson2013 5. Arnold S. Berger "Embedded System Design", CMP books, USA 2002

Course Description

- To introduce the Building Blocks of Embedded System
- To Educate in Various Embedded Development Strategies
- To Introduce Bus Communication in processors, Input/output interfacing.
- To impart knowledge in various processor scheduling algorithms.
- To introduce Basics of Real time operating system and example tutorials to discuss on one real time operating system tool

Prerequisites	Co-requisites				
Microprocessor and Microcontroller	NIL				

required, elective, or selected elective (as per Table 5-1)

selected elective

Course Outcomes (COs)

- CO1: Acquire a basic knowledge about fundamentals of microcontrollers
- CO2: Acquire a basic knowledge about programming and system control to perform a specific task.
- CO3: Acquire knowledge about devices and buses used in embedded networking
- CO4: Develop programming skills in embedded systems for various applications.
- CO5: Acquire knowledge about basic concepts of circuit emulators.
- CO6: Acquire knowledge about Life cycle of embedded design and its testing.

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	а	b	С	d	е	f	g	h	i	j	k
CO1	М	М	М	Н	М		М			L	L
CO2	Н	М	М	Н	Н		М			L	L
CO3	Н	М		Н	Н		М			L	L
CO4	Н	М		Н	Н		М			L	L
CO5	Н	М	Μ	Η	Н		М			L	L
CO6	Н			Н	Н		М			L	L

List of Topics Covered

UNIT-I EMBEDDED DESIGN WITH MICROCONTROLLERS

9

Product specification – Hardware / Software partitioning – Detailed hardware and software design – Integration – Product testing – Microprocessor Vs Micro Controller – Performance tools– RTOS Micro Controller -issues in selection of processors.

UNIT-II PARTITIONING DECISION

9

Hardware / Software duality – Hardware-Software portioning- coding for Hardware- software development – ASIC revolution – Managing the Risk – Co-verification – execution environment – memory organization –memory enhancement – Firmware-speed and code density -System startup.

UNIT-III FUNCTIONALITIES FOR SYSTEM DESIGN

9

Timers, Watch dog timers – RAM, Flash Memory basic toolset – Integration of Hardware & Firmware- in System Programming, in Application Programming, IDE-Target Configuration- Host based debugging – Remote debugging – ROM emulators – Logic analyzer.

UNIT-IV CIRCUIT EMULATORS

Ç

Buller proof run control – Real time trace – Hardware break points – Overlay memory – Timing constraints – Usage issues – Triggers.

UNIT-V EMBEDDED DESIGN LIFE CYCLE & TESTING

9

Objective, Need, different Phases & Modeling of the EDLC, choice of Target Architectures for Embedded Application Development-for Control Dominated-Data Dominated Systems-Software & Hardware Design, PCB Design, Manufacturing & PCB Assembly-Bug tracking – reduction of risks & costs – Performance – Unit testing – Regression testing – Choosing test cases – Functional tests – Coverage tests – Testing embedded software – Performance testing – Maintenance.